ESP Logo
 Elliott Sound Products Muting Circuits For Audio 

Copyright © 2015 - Rod Elliott (ESP)
Page Published 20 October 2015

Share |

Articles Index
Main Index


Providing the ability to mute an audio stream is both very common and in many cases, essential. I've described a remote receiver and transmitter that uses a relay for muting, and of all the methods available that is one of the simplest. The relay is wired so that the normally closed contacts simply short the signal to earth (ground). Until the relay is activated, the signal is muted, and because the contact resistance is typically only a few milliohms, there's no need to add resistance to the circuit that provides the audio signal (typically an opamp).

Most opamps are perfectly happy to have their outputs shorted, but as a matter of course I always include a 100 ohm output resistor to ensure stability if the opamp is connected to a reactive load such as a length of shielded cable. In the many years that I've been designing and building opamp and other 'small signal' circuits, I've never had one fail because its output was shorted.

The down side of using a relay is that muting (and un-muting) the signal is very abrupt, and while the difference between 'hard' and 'soft' muting is audible, most people are perfectly happy with relays for muting. Some people may not like the audible click made by a relay when it opens or closes, and others like the audible response. I like it because it provides audible feedback that the circuit is functioning, regardless of whether there's a signal or not. There are several other options for muting, as described below.

Mute circuits are also used at the inputs of many professional power amps. In some cases the signal is muted if the amp gets too hot, and nearly all mute the inputs for 1 - 5 seconds after power on. This is done so that turn-on/ off noises from mixers and other gear is blocked in case the entire system is powered up at once. There are countless applications for muting circuits, and not all are there so you can stop the noise from TV ads .

One thing that is very important is that there must be no DC along with the signal that's being muted. Any single supply source (such as a USB DAC for example) must be capacitively coupled and have a bleed resistor to the signal common (earth/ ground) to ensure that the DC component is removed. Failure to do so may damage your loudspeakers, because the DC offset from some circuits can be quite high. If a mute circuit suddenly removes perhaps 700mV of signal along with 2.5V of DC, the noise will be very loud indeed!

One thing that really surprised me was the number of patents that cover perfectly ordinary muting circuits that have been used for years by any number of manufacturers. In general, these patents aren't likely to be worth the paper they are written on, because they are largely in the 'public domain'. It pretty much goes without saying that these patents have been granted in the US, where the patent system is often considered to be broken. It's hard to argue this, because there are so many patents that simply don't make any sense.

One form of muting that has been around for a very long time is used in FM receivers and other radio applications. When used with communications and CB ('citizens band') receivers, it's commonly called a 'squelch' circuit, and it's designed to mute the inter-channel noise. If no RF signal is received, you will normally hear white noise because the receiver operates at maximum gain and amplifies external noise as well as internal circuit noise. The muting circuit cuts out the background noise, but is released as soon as an RF signal is received.

Another form is called 'ducking', common in broadcast systems. If the announcer speaks while music is playing, the 'ducking' circuit partially mutes the music by reducing its level to some preset value that can be set with a pot. Some of the circuits below can be used to this end, by adding a variable resistance in series with the muting switch. The control and/ or level reduction circuitry is not described here because each case will be different. Ducking circuits will most commonly use a comparatively slow attack and release time so the effect is not abrupt, and an LED+LDR circuit is the most appropriate.

1 - Relay

Of all the methods that can be used, this is my personal favourite. It's very reliable, and automatically mutes the signal when there is no power. To make the signal audible again, a transistor is turned on that energises the relay coil and removes the short. This can be done after a power-on delay, or at the touch of a button (local or remote). With a bit of extra circuitry, the mute can be reapplied at the instant power is turned off. This is provided for in the P05 preamp power supply for example, and it uses a 'loss-of-AC' detector circuit. The most common relay will be a miniature DPDT (double-pole, double-throw) type, and a single relay can mute both channels of a stereo preamp.

Naturally the relay has to be powered for as long as the signal is required. A typical small signal relay might draw around 12mA or so (assuming a 12V coil and a 1k coil resistance). The one pictured below has a coil resistance of 360 ohms (12V coil) and will draw 33mA. There is some dissipation, but in real terms it's nothing to worry about with mains powered equipment. For battery operation it's another matter though, as every milliamp matters.

Figure 1 - Typical Miniature Relay, And Muting Circuit Using A Relay

The input tagged 'CTRL' (control) activates the relay and removes the short with the application of a voltage from 5 to 12V. The attenuation of a relay is close to infinite because the contact resistance will be a few milliohms at the most. Because the normally open (NO) contacts are only used to short the signal to earth, there is zero signal degradation when the contacts are open. A relay also provides close to perfect protection for the output stage of any preamp, so stray static charges and other potentially damaging signals are simply shorted to earth and can do no harm.

The only down side of using a relay is that it usually does short the output of the preceding stage, although that can be solved if you are willing to pass the signal through the normally open contacts when the relay is activated (the output then connects to the 'NO' relay contacts). There are some circuits that may not be happy with a shorted output - discrete opamps and other all transistor circuits. Project 37 (DoZ Preamp) is one example, but provided the 100 ohm output resistor is included it's unlikely that it will come to any harm with normal signal levels (up to 3V RMS output). The easy way to ensure that it's happy at any level is to increase the output resistor to 560 ohms. This is quite low enough for any preamp, and means that a shorted output cannot damage the preamp.

Relays are also ideal when balanced interconnections are used, as the relay contacts can simply short the 'hot' and 'cold' balanced signals together. Alternatively, a double pole relay can short both balanced signals to earth. Note that you absolutely must never short the two signal lines to earth when phantom power is used. The method used depends on the application and the designer's preference.

2 - JFET (Junction Field Effect Transistor)

Junction FETs (depletion mode) can also be used, and like the relay they mute the signal by default. To un-mute the audio, a negative voltage is applied to the gate, turning off the JFET and removing the 'short' it creates. Unlike a relay, JFETs have significant resistance when turned on. The J108/ 109/ 110 series are often used as muting devices, and while certainly effective, the source impedance has to be higher than with a relay. The typical on resistance of a J108 is 8 ohms (with 0V between gate and source). The J109 has an on resistance of 12 ohms, and the J110 is 18 ohms. I tested a J109 with a 1k series resistor, and measured 44dB muting, and that's not good enough so two JFETs are needed as shown.

Note that JFETs will generally not be appropriate for partial muting (for a 'ducking' circuit for example), because when partially on they have significant distortion, unless the signal level is very low (no more than around 20mV), and/or distortion cancelling is applied. This application is not covered here.

Figure 2 - Dual JFET Muting Circuit

To un-mute the signal, it's only necessary to apply a negative voltage to the gates. There is no current to speak of, and dissipation is negligible. JFETs are ideal for battery powered equipment, but there has to be enough available negative voltage to ensure that the JFET remains fully off over the full signal voltage range. Using a JFET to get a 'soft' muting characteristic works well. The JFET will distort the signal as it turns on or off, but if the fade-in and out is fairly fast (about 100ms as shown) the distortion will not be audible. You may be able to use a higher capacitance for a slower mute action, but you'll have to judge the result for yourself. I tested the circuit above (but using a single J109 FET) and the mute/ un-mute function is smooth (no clicks or pops) and no distortion is audible. Measured distortion when the signal is passed normally is the same as my oscillator's residual (0.02% THD).

If a JFET has an on resistance of 8 ohms, the maximum attenuation with a 1k source impedance is 42dB. This isn't enough, and you will need to use two JFETs as shown to get a high enough mute ratio. This is at the expense of total source resistance though. It is possible to reduce the value of the two resistors (to around 560 ohms) which will reduce the muted level to around -74dB, which is probably quite sufficient for most purposes.

There is also the option of using a JFET based optocoupler (the datasheet calls it a "symmetrical bilateral silicon photo detector") such as the H11F1. These are claimed to have high linearity, but I don't have any to test so can't comment either way. According to the datasheet, low distortion can only be assured at low signal voltages (less than 50mV). They might work as a muting device, but the FET is turned off by default, and turns on when current is applied to the internal LED. This means that the internal FET would need to be in series with the output for mute action when there's no DC present. The on resistance of the FET is 200 ohms with a forward current of 16mA through the LED.

Analog Devices used to make ICs called the SSM2402 and SSM2412 that included a three JFET 'T' attenuator and a complete controller circuit for a two channel audio switching and/or muting circuit. They have been discontinued, and there doesn't appear to be a replacement. They were aimed at professional applications such as mixers and broadcast routing, and would be useful parts if still available.

3 - BJT (Bipolar Junction Transistor)

It may seem unlikely, but ordinary transistors can be used for on/off muting. Several manufacturers made transistors that were specially designed for the purpose (such as the Toshiba 2SC2878 (TO-92) or Rohm 2SD2704K (SOT-346 SMD) which appears to be still available), but perhaps surprisingly, 'ordinary' transistors work perfectly well. The purpose designed devices have roughly equal gain when the emitter and collector are reversed (sometimes referred to as 'reverse gain'), while 'normal' transistors are optimised for maximum gain when the emitter and collector are used as intended.

Provided enough base current is provided, a standard transistor (such as the BC549 which I tested) works perfectly. The transistor will handle signal levels up to 5V RMS easily, and when turned on the attenuation is very high. One complication with BJTs is that the base must be open circuit when the mute signal is absent. Even a high resistance (such as 1Meg) will cause high levels of asymmetrical distortion. The system shown works very well, but alternatively the base of the mute transistors can be driven to a negative voltage when off. The negative voltage (if used) has to be greater than the peak signal voltage and must be less than the base-emitter reverse breakdown voltage (typically around 5V). If this is exceeded the transistor will be damaged. I don't intend to show the circuit using a negative bias voltage as it's not necessary and only adds complication.

Because 'conventional' transistors have low gain when the emitter and collector are reversed, the base current needs to be equal to the peak signal current. For example, if the source voltage is 5V peak and impedance is 1k, the peak signal current is 5mA, so you need to provide at least 5mA base current to ensure complete attenuation. The level shifter is needed and Q2 provides an open circuit to the base resistors (R7 and R8) when the signal is not muted.

Figure 3 - Dual BJT Muting Circuit & Level Shifter

I've shown a dual version above, and Q4 appears to be wired backwards. In fact, it is backwards, with the collector used as the emitter. Transistors will still work when connected like that, but with very low gain. Where the forward gain (hFE) may be 300 or more when wired normally, it may only be somewhere between 1 to 10 when reversed (this is device dependent). Some devices may even show gain of less than unity when reversed. A BJT operated as a muting switch works as a normal transistor for only one polarity of the input signal, and is reversed for the other. That's the reason for using a higher base current than you would use otherwise.

The attenuation is better than you might imagine. 60dB is easy to achieve, although there may be a small DC offset when the muting transistors are on. I simulated 0.8mV for the circuit shown, but measured a little more than that during a single transistor bench test - about 2mV, which is nothing to worry about. Distortion with 5V RMS input and with the base open circuit or connected to -5V was the same as my oscillator's residual (0.02%). The on resistance of the BC549 I tested was 3 ohms. This isn't as good as the Rohm 2SD2704K transistor (1 ohm with 2mA base current), but is significantly better than the J108 JFET.

Project 147 shows a complete stereo muting system based on BJTs. You can also use PNP transistors for muting, but of course the base drive polarity must be reversed.


Enhancement mode MOSFETs can be used for muting, but two are needed, connected in 'inverse series' to get around the issue of the internal body diode. They can work very well, but the need for two is a bit of a nuisance. The fact that they need a DC gate voltage to be turned on is a disadvantage, but it's all the greater because it has to be a floating supply. This means that the overall circuit becomes much more complex to the point where it's not worth the trouble. A highly simplified version is shown below, using a 9V battery as the power source and an optocoupler to turn the MOSFETs on and off.

Figure 4 - MOSFET Muting Circuit & Optocoupler

While performance should be very good, the complexity of the complete system is such that it can't be recommended. The process is based on a MOSFET 'relay', and there's more info in the MOSFET Relays article. The article concentrates on switching the speaker lead, but smaller MOSFETs can be used for muting. Note that each muting circuit needs its own separate floating DC supply and optocoupler, and if that doesn't convince you that it's a silly idea nothing will .

You can use a photovoltaic optocoupler to drive the MOSFET gates (it would replace the optocoupler and 9V battery shown). That removes some of the nuisance value, but it's still not worth the effort. The reason ... you can get MOSFET output optocouplers that only need a couple of resistors for less than the cost of a photovoltaic isolator.

If you can get hold of KQAH616D (0.1 ohm on resistance) or LCA110 (35 ohms on resistance, and apparently discontinued) MOSFET relays, these do everything. There are quite a few listed on supplier websites, so you can choose the type you can get most easily. I've not tested any of them and can't attest to their suitability, but those I've looked at seem ok. The KQAH616D seems to be unobtanium but you might still find them somewhere. It would probably be better to use them in series with the output, so the signal is disconnected by default. Static protection for the output is essential. Another possibility is the TLP222G (Toshiba), which is another dual MOSFET optocoupler, which has a rated maximum MOSFET voltage of 350V, and a typical on resistance of 25 ohms. I've not used any of these, and can't comment on their suitability for audio.

All IC MOSFET relays require a DC source to power the internal LED so they will conduct. I would expect that most people would prefer that they were not in the signal path, although it's not known at this time whether they create any distortion when used to pass the signal (as opposed to shorting it to earth).

Figure 4A - Muting Circuit Using MOSFET Optocoupler

The general scheme using any of the MOSFET optocouplers is shown above, but note that pinouts may be different from those shown for other versions. There is almost no real difference between this and the circuit in Figure 4, except that the need for a floating supply is removed. It's expected that performance will be similar. Although this is potentially a good solution, it requires a supply voltage to mute the signal, and that limits its usefulness.

5 - LED/ LDR

Light dependent resistors (LDRs) can make an excellent muting circuit, but ideally you need two LED/ LDR optocouplers for each channel because their on resistance is comparatively high. One is used to turn the signal off, with another to short any residual to earth. They are easy to drive and show very low distortion, but the circuit is more complex (and expensive) than a JFET or a BJT circuit. It's possible to get at least 100dB of attenuation, and LDRs have a slow response and very low distortion during the transition. This makes it a 'soft' muting system, where the signal is reduced to nothing over a few hundred milliseconds, and is returned to normal in a similar timeframe.

You can use commercial LED/ LDR units (typically Vactrol™ VTL-5C4 or similar), or you can make your own. Full details on how to build a LED/LDR opto isolator are provided in Project 147. If you make your own, they will not be quite as sensitive as the VTL-5C4, but they work well and are fairly cheap. Make sure that the LDRs you use have a high dark resistance - greater than 500k if possible. This is the only (simple) version that is suitable for partial muting without distortion.

Figure 5 - LED/ LDR Optocoupler Muting Circuit

The slow response (fade-in, fade-out) would seem to be necessary, but in reality it's simply a nice touch and certainly not essential. The LED/LDR optocoupler is one of the few methods that doesn't cause distortion as the signal fades in or out so it can be as slow as you like.

When the 'CTRL' input is high, Q1 conducts, and current flows through R3 and turns on LED1. Q1 also removes base current from Q2 via D1. D2 is included to ensure that Q1 can take all available base current so that Q2 remains off. LED2 is off, LDR2 is high resistance and LDR1 is low resistance. The signal is passed normally. There are many ways that the LEDs can be driven (opamps, TTL inverters, micro-controller, etc.) and the circuit shown is merely representative.

When the 'CTRL' input is low, Q1 can no longer 'steal' the base current for Q2 (supplied via R4) so Q2 conducts and LED2 is on. This passes signal to ground, and since LED1 is off the remaining (small) signal is fully attenuated by LDR2. The diodes are essential, and without them the circuit won't work.

6 - Diodes

While using diodes to switch a signal on or off may seem unlikely, it can be done, and some early compressor/limiters used diodes as a variable gain element. You might expect distortion to be high, but that's not necessarily the case. When off, there isn't much distortion, provided there are enough diodes to ensure that the signal peaks don't exceed the diode forward voltage. The signal is attenuated by passing current through the diodes, which lowers their impedance. The main disadvantages of using diodes are the need for very close forward voltage matching to avoid DC offset when the signal is muted, the circuitry needed is more complex than for any of the other methods, and the current drain is higher than most of the other circuits. It's included here only because diode switching is an option that most people have never come across, and it has some interest value (if nothing else).

Figure 6 - Diode/ Zener Muting Circuit

All things considered, it's very difficult to recommend using diodes because they don't work as well as any of the other mute circuits shown. There is also some risk of distortion for high level signals, and it's very hard to ensure that no sensible signal level will cause the diodes to partially conduct. Attenuation for the circuit shown will be around 35dB, and you can be assured that there will be some DC offset, even if the diodes and zeners are perfectly matched. Even the simulator I use (which by default has perfectly matched components) shows 12mV offset, and about 0.02% THD with a 707mV input signal. These are not good results compared to the alternatives, and the attenuation is barely acceptable.

The circuit shown also has a slow and distorted recovery when the mute signal is removed. It takes around 500ms for the signal to return to normal, and during the 'fade-up' process, there is significant distortion. R6 was added to reduce the recovery time to something tolerable - a lower value can be used, but other changes will be needed to restore an acceptable attenuation.

7 - CMOS Switches

Devices such as the 4066B CMOS bilateral switch can be used both for signal source selection and muting. They are quite linear, but the peak audio amplitude is limited to around ±7V (5V RMS) because they cannot be operated with a supply voltage above 15V (±7.5V DC). Their on resistance is typically around 80 ohms, somewhat higher than desirable for many applications. If you use one to disconnect the signal and another to connect the output to earth (as shown below), the muted signal will be better than 80dB below the normal level.

Figure 7 - CMOS Bilateral Switch Muting Circuit

Q1 is used as a level shifter, because the 4066 operates from ±7.5V (the maximum allowed). If the 'CTRL' input is connected to a voltage of 7.5V or is floating, Q1 is off, and the control signal to U1A and U1B is low, so they are turned off. U1B is configured as an inverter, and when it's off, U1C gets +7.5V (via R4) at its control input so it is turned on, shorting the output. When 'CTRL' is brought low (typically earthed), Q1 turns on, thus turning on U1A and U1B. U1B in turn removes the control input to U1C, which now turns off. The signal is passed normally. The unused switch should have its control input (Pin 12) connected to -7.5V and input/ output pins (10 & 11) connected to GND.

These ICs have extremely high input impedance for the control signal, and quiescent current drain is exceptionally low - around 0.01µA at 25°C. They are static sensitive, and direct connection to the outside world is not recommended unless protective diodes are used. Even so, there is always the likelihood of damage if an un-earthed amplifier is attached without grounding it first.

CMOS switches are common in many audio circuits, and there is no reason to suspect that they degrade the sound quality to any audible degree. They are very sensitive to static because of their exceptionally high internal impedances. Since they are off by default, the supply voltages must be maintained so they can mute, and they must have their supplies present before they can mute any power-on noise. This is a limitation with all circuits that do not provide at least a partial short with no power.

8 - Digital 'Pots'

Most digital pots provide a mute function. Some use internal logic to set the 'pot' wiper to zero to mute the signal, and return it to the previous setting to un-mute. There are so many and they are so diverse that it's not possible to show a representative circuit. If you intend to use a digital pot, then you have to work out how to access the various functions. Most need a microcontroller to send the digital codes needed to change volume, mute, etc.

Many digital pots are configured to use 'zero voltage switching', and they only make a change when the signal voltage is close to zero. This avoids the slight click you may hear from a relay, JFET or BJT muting circuit, as these are close to instantaneous. No schematic is shown for a digital pot, because there are too many different types and the application notes or datasheets will have the information needed.

9 - VCAs

There is the option of using VCAs (voltage controlled amplifiers/ attenuators) to control the level of multiple channels of an audio system simultaneously. The circuit is shown in Project 141. This is easily muted by shorting the control voltage to the positive supply. The signal will be reduced to zero smoothly, with no distortion, clicks or pops. Unfortunately, this mutes the signal, but not the output, and this may result in the VCA itself making odd noises during power-on and off - this depends on the VCA and opamps used.

10 - IC Power Amplifiers

Many IC power amps have provision for muting, and in some cases standby as well. These functions work well, but are really only applicable for integrated amplifiers that use an IC power amp. Most are easy to use, and typically the signal is muted until a voltage is applied to the mute pin. This varies depending on the power amp - TDA7293 and LM3886 both have a mute function, but they work differently. With an LM3886 the mute pin is connected to the -ve supply (usually via a resistor) to un-mute the output, but with the TDA7293 the mute pin is connected to a +ve voltage of 5V or more.

There are many others, including Class-D (switching) amplifiers that provide a mute and/ or standby function. To understand each type requires you to look at the datasheet for the specific IC you intend to use. Being able to mute a power amp for home use isn't actually as useful as it seems, unless the system is an integrated amplifier, with both preamps and power amps in the same enclosure.

11 - Static Damage

Many sources (e.g. CD/ DVD/ Blu-Ray players, etc.) are not earthed, and they use switchmode power supplies. In all cases, there will be a Y-Class cap from the DC output of the supply back to the rectified incoming mains. This is done so the unit will pass EMI tests, but it also causes the output to float at some AC voltage above earth (anything from 50 to 120V AC). Even a 1nF Y-Class cap can provide more than enough instantaneous current to damage opamp inputs and outputs and other sensitive circuitry.

The standard RCA type connector doesn't help matters, because the centre pin (signal) makes contact before the shield, so circuitry can be subjected to whatever voltage is present at the time, with the steady-state current limited by the capacitor. It's not steady-state voltage or current that causes the problem, it the instantaneous current that is delivered at the instant the centre pin makes contact. Touching the outer shield part of the connector to the chassis before inserting the plug may help, but it's certainly not a reliable way to ensure nothing is damaged. It's far safer to use a clip lead or similar to link the two chassis before plugging anything into the RCA sockets, or ensure that AC mains power is removed from all equipment before making connections.

Figure 8 - Typical Switchmode Power Supply

In a typical SMPS as shown above, C4 (typically Y2 Class) is the one that causes all the trouble, even though it's usually rated at no more than 1nF. It combines with the primary to secondary capacitance of T1 to provide a low current path between the incoming AC and the DC output. Provided the secondary is earthed, only a tiny current flows, but if it's not earthed, momentary contact can cause an instantaneous current of several hundred milliamps. If that only flows in the chassis or circuit common it's unlikely to cause any problems, but when the connection is made via the signal lead the momentary current spike can easily damage sensitive components.

The steady state current is around 50µA, but the peak current is limited only by the total circuit impedance. The peak voltage across C4 can be as much as the AC mains peak (325V for 230V mains), and whether anything is damaged or not depends on the exact instant in time when the connection is made during an AC cycle, and the relative speed of the connection. Metallic contact usually makes one or more fast, low resistance connections as a plug is inserted. The peak current can easily exceed 1A, albeit for a very short period (around 1µs or so). That's all it takes to damage any semiconductor.

This is something that I've tested extensively, and there is no doubt at all that even a comparatively rugged TO-92 transistor can be degraded or destroyed by a single input pulse from a Y-Class cap set up to simulate real world conditions. It's (apparently) common for muting transistors to be damaged or destroyed, because they connect directly to the output of many products, including media players, game consoles, TV sets and many others. Even a 'smartphone' that's connected to a charger and then to some other gear via the headphone socket poses a risk, because the charger uses the same capacitor 'trick' in order to pass EMI tests.


The ideal mute circuit will attenuate the signal in the absence of power, so the signal is muted by default. It needs an active system to allow the mute to be removed, which will be done after all circuitry has had time to settle after power is applied. It will mute the signal immediately when mains (or battery) power is removed, before any filter caps have had time to discharge to the point where opamps become unhappy. With a typical supply filter cap of 1,000µF prior to the regulator and a current drain of around 100mA, a 15V supply will take about 100ms before the voltage is low enough to cause some opamps to misbehave. This is plenty of time for the mute voltage to be removed so most noises can be suppressed fairly easily.

Only the relay and JFET mute circuits satisfy the above criteria.

Mute circuits that require a voltage to be present pose additional difficulties, because some means of holding up the supply voltage for the mute circuit has to be provided. A capacitor will usually do nicely, but it needs to be fairly large to ensure that the mute is maintained until all 'disturbances' have ended. It's not hard, but it does add extra parts. Providing a supply voltage before anything else gets power is much harder, so if you have equipment that makes noise at power-on your choices are limited.

It's very hard to beat a relay. The mute/ un-mute action is sudden and creates some transients, but the effect is not usually a problem. It may not have the finesse of a nice soft action as you'll get with a LED/LDR combination, but it does what's needed reliably and with the absolute minimum of additional components. An added benefit is the fact that the mute is active in the absence of power, and the circuitry has to provide a DC voltage to activate the relay and remove the mute. Thos helps to protect the output stages of your equipment from static damage. The relay is the simplest and most effective of all muting circuits.

Relays are also completely immune from damage caused by plugging in RCA leads. With these, the centre pin makes contact first, and any static charge (or the voltage that can be measured from all 'double insulated' and other un-earthed equipment) can't damage the contacts. The short circuit provided by the relay also protects the rest of the circuit.

The next best option is JFETs, but their attenuation is not as good as a relay. The JFET is also static sensitive, and protection is needed to prevent static impulses from destroying the JFET. While BJTs actually work surprisingly well, they require more external circuitry than a relay or JFET so are not very good candidates.

There is a lot of very confused thinking on the Web about mute circuits, and what does (and does not) work. Those shown here all work exactly as described, and distortion is generally very low (with the possible exception of the diode circuit). Many people think that using BJTs must cause distortion, but that's only true if they aren't used properly. Perhaps surprisingly, transient distortion (while the signal is being muted or restored) is close to being inaudible provided the transition is fairly fast. If the transition takes less than 100ms, you almost certainly won't notice the distortion from a JFET. However, a BJT produces highly asymmetrical distortion during the transition and that may be audible under some conditions.


References are few, because there's surprisingly little information on the Net. There are certainly a few circuits (and more than a few forum posts), but finding definitive info is not easy, and this article is intended to bridge that gap. It's quite obvious that many of the comments made in forum posts and elsewhere simply show that the writers don't understand muting circuits at all.

  1. J108/ 109/ 110, H11F1, 2SC2878, 2SD2704K, TLP222G, SSM2402, CD4066B (etc.) Datasheets
  2. Project 104 - Preamp/ Crossover Muting Circuit (ESP)
  3. Project 147 - BJT Muting Circuit (ESP)
  4. MOSFET Relays - ESP Article


articlesArticles Index
main indexMain Index

Copyright Notice. This article, including but not limited to all text and diagrams, is the intellectual property of Rod Elliott, and is Copyright © 2015. Reproduction or re-publication by any means whatsoever, whether electronic, mechanical or electro- mechanical, is strictly prohibited under International Copyright laws. The author (Rod Elliott) grants the reader the right to use this information for personal use only, and further allows that one (1) copy may be made for reference. Commercial use is prohibited without express written authorisation from Rod Elliott.
Page created and copyright © 20 Oct 2015